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Abstract

The advent of high performance computing has changed the way scientists and
engineers solve problems. Scientists previously would make a tremendous effort
to simplify a complex problem to it’s essence by reducing geometry, neglecting
changes and only preserving first-order effects. Now, scientist are able to leave
the details in the problem and computationally arrive at a result. To develop the
computational physics programs used by scientists, developers make assumptions and
use approximation to reduce complex, continuous calculus to algebraic expressions
which computers are able to solve. While current computing technology is only
capable of solving algebraic expressions, they are able to solve these expressions
very rapidly making them immensely useful tools in research. However, it is
important to be able to verify that the approximations and assumptions used by
developers to create computational programs were not violated by the particular
problem being solved. Further, it is important to verify results to ensure the user
did not make an error in the input of the problem. The most essential tool to
verify computational results is comparison to experiment. Sometimes, experimental
data does not exist to compare to computational results requiring the need for
an alternative method to verify computational results. This proposal develops a
methodology used to appropriately apply the Boltzmann transport equation for
neutrons (BTE) to sub-regions of a HI-STORM 100 spent fuel cask in order to
verify MCNP simulation results of neutron transport through the cask. As the
BTE is only solvable for the simplest of cases, a mathematical tool, symmetry
analysis, will be introduced. Symmetry analysis provides a standardize approach
for identifying symmetries present in partial differential equations to reduce the
order of the differential equation. A sensitivity analysis of nuclear theory used in
this work will also be proposed. Sensitivity analysis identifies the parameters that
contribute the most to uncertainty in the system response. Establishing knowledge
of key parameters can guide future model development to decrease the uncertainty
of the result. Progress has been made in identifying a region to compare simplified
analytic solutions and computational results. Initial results show agreement between
the the two results, showing utility of the methodology. Continuing forward, more
sub-regions will be identified and compared with appropriate analytic models solved
using symmetry analysis. Afterward, a sensitivity study of nuclear theories used in
this work will be conducted to identify parameters with the greatest affect on the
system. The final goal of this research is to provide a complete methodology which
can be used to verify computational results through comparison to analytic models
with a reduced degree of mathematical complexity.
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1 Introduction

This research explores the novel intersection of three seemingly disparate areas of
physics and applied mathematics: neutron transport theory, symmetry or Lie group
analysis techniques, and sensitivity analysis.

Generally speaking, a goal of this work is to seek sub-regions of a detailed
problem (that otherwise can only be solved using numerical techniques) that are
adequately described by the neutron transport equation. Depending on the specific
choice of sub-region (in time, space, energy, or angle) additional simplifications of
the neutron transport equation may be possible. The end goal of this exploration is
to identify several problem sub-regions that are describable by mathematical models
with a reduced degree of mathematical complexity, as opposed to that corresponding
to the full-scale problem.

Simplified models corresponding to specific problem sub-regions may be described
by systems of integro-differential equations, partial differential equations, ordinary
differential equations, or algebraic equations, supplemented in some cases by initial,
boundary, or ancillary conditions. Depending on the complexity of the simplified
models, various forms of semi-analytic or even exact solutions may become possible.
Symmetry analysis techniques are immensely valuable in this context, as they
represent the most complete theory for systematically constructing broad classes
of solutions, many of which possess special or otherwise desired properties (e.g.,
invariance under a variety of physical transformations such as translation, scaling,
etc). As such, a primary focus of this work will be to use symmetry analysis methods
to construct solutions for simplified sub-region models appearing within the broader
problem framework, and provide comprehensive evaluation of the physical nature of
these solutions.

Once solutions to the simplified models are obtained, they may be used for
a variety of purposes. The principal aim of this research is comparison of the
analytic solution models to computational simulation results arising from simulation
of either the full scale problem, or the specific sub-regions. This procedure is
phenomenological in nature, and is thus intended to capture elemental physical
processes that are occurring within sub-regions of the full scale system. Therefore,
while no analytic solution is expected to be available for the full scale system, any
understanding gained in the sub-regions reinforces confidence that the integrated
scales are being simulated in accordance with physical intuition. This outcome is
extremely valuable in cases where experimental data is sparse or nonexistent.

In this work, the process of quantifying comparisons between the analytic
and simulated models is exemplified through the inclusion of sensitivity analysis
procedures. Forward modeling of sensitivity structures is conceptually simple but
computationally expensive for large problems, as it involves sampling a space of
possible parameter values and executing a new simulation for each value. For
analytic models the procedure is the opposite: using a generalized notion of the
directional derivative, sensitivity structures can often be computed in closed-form.
The comparison of these two methods forms the final component of this work. In
addition to basic physics phenomenology, the sensitivity structure arising from
analytic models can be compared to that found from forward sensitivity modeling
of full-scale simulations. When these structures compare favorably, confidence in
the full-scale simulations is once again reinforced.

All of the above represents a generic procedure that can be applied to any
physical system governed by systems of differential equations containing parameters.
As a proof of principle with important applications, the emphasis of this work will
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include analysis of a Holtec HI-STORM 100 spent nuclear fuel canister, as described
in Sec. 2.1, through the previously described procedures. The principal physics
describing the operation of this system is neutron transport, as briefly summarized
in Sec. 2.2. Fundamentals of symmetry analysis and forward sensitivity analysis
techniques are provided in Secs. 2.3 and 2.4, respectively.

1.1 Motivation

Simulation has become an important tool in research. Before the advent of super-
computing, problems had to be overly simplified before being solved. Now, we are
able to solve much more complex problems to understand the physics occurring
through use of simulation tools. While we do not need to simplify the problem
as much to understand it, we still need to check that we have worked within the
assumptions and approximations of the computational software or if an error was
made by the user in the input file. The most essential tool to work this problem is
comparison to experiment or comparison to other experiments that share similar
features.

However, if no experimental data is available, we can use analytic or semi-analytic
tools to check that we worked within the problem assumptions and approximations of
the computational program. The purpose of my work is to compare analytic models,
developed from theory, with computational results for the purposes of verifying
that a simulation was conducted appropriately while simultaneously teaching the
user about underlying physics in a problem. If the analytic solution agrees with the
computational results, then the user’s understanding of the underlying physics of
the problem is correct and they are capable of analyzing the problem appropriately.
However, the situation where the analytic solution and computational result differ
can lead to an even more profound result. In this scenario, the user learns that
either important physics was neglected or an error was made during analysis. In this
case, the analytic solution has provided insight into the computed problem since the
assumptions used to arrive at the analytic solution deepen the user’s understanding
of the physics occurring in a sub-region. In both situations, the user was able to
learn about the underlying physics of the problem which leads to a more in depth
and meaningful analysis of the results.

2 Background

To show the utility of verifying the correctness of a simulation, we investigate how
nuclear theory can be applied to a spent fuel cask to aid in analysis. We begin by
identifying a spent fuel cask and discussion of mathematical concepts of neutron
transport, symmetry analysis, and sensitivity analysis.

2.1 Spent Fuel Casks

As a result of the halted promise of a permanent spent nuclear storage facility
at Yucca Mountain, nearly 100 nuclear reactors face the question of how to store
their growing amounts of used nuclear fuel. Cooling ponds are nearing capacity, or
in some cases, at capacity. To store used nuclear fuel, power plants are building
intermediate storage facilities until a permanent solution can be found. These
intermediate storage facilities use dry fuel casks to provide environmental protection,
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theft protection, and heat conduction for used fuel that has spent, at least, five
years in a cooling pond. It is important that a cask is capable of performing these
functions until a permanent solution is found.

Beyond acting as a radiation shield, casks are also designed with security features
to show evidence of tampering in the event someone tries to remove fuel. In the
event a tamper evident tag or seal is broken, the contents of the cask must be verified.
Currently, a company would have to re-open the cask and visually verify that all
fuel is accounted for before re-sealing the cask, an expensive endeavor. However,
work by Dr. Greulich, among others, has been focused on non-destructive methods
to verify cask contents using simulation as a basis for proof of concept [1, 2].

Simulation has proven a useful tool for ensuring spent fuel casks are capable of
providing environmental, theft, and radiation protection. Unfortunately, experimen-
tal data for which theses simulations can be compared is limited, and in some cases,
non-existent. Motivating the need for verification tool to ensure the correctness of
spent fuel cask simulation results.

This work investigates a Holtec HI-STORM 100 canister system to develop a
methodology to as a process of quantifying comparisons between the analytic and
simulated models. This cask is the most used dry cask system currently implemented
[3]. Holtec designed the HI-STORM 100 system to hold spent fuel from pressurized
water reactors (PWR) or boiling water reactors (BWR) in an inner multi-purpose
canister (MPC), see figure 1 [4]. Spent fuel rods are inserted into fuel cells as bundles
of rods and steel structure.

The MPC is designed with an inner, honeycomb structure to hold the fuel rods,
provide radiation shielding, and conduct heat away from spent fuel. A neutron
absorber, BoralTM , is placed in key locations within the honeycomb basket where
the locations vary based on the type of MPC. BoralTM is a combination of boron
carbide (B4C) powder filling the space between two aluminum plates. The MPC
is backfilled with helium to purge the system before being sealed shut. Figure 2
shows the three types of MPC basket structures used with the HI-STORM 100
system, where the number in the name corresponds to the number of cells in the
basket. The MPC-24 and 32 are used to store PWR spent fuel where the MPC-68
has been designed to store BWR fuel. The MPC-32 was chosen to demonstrate the
principals in this work, but the methodology developed by this work is capable of
being extended to other MPC designs.

The HI-STORM 100 storage overpack is a combination of standard concrete
surrounded by a shell of carbon steel which stands around 600 cm tall and about
335 cm in diameter, fig. 3. The overpack has inner channels to provide natural
convection between the MPC and the environment. A 75 cm thick annulus of
concrete surrounds the MPC to provide neutron shielding and protection in the
event the cask falls or tips over. A radial layer of carbon steel surrounds the concrete
to provide gamma shielding and to increase the integrity of the cask in the event
of the cask was dropped or tipped over. The overpack has neutron and gamma
shielding beneath the MPC (the pedestal) and above the MPC (the lid) which are
comprised of the same materials to ensure proper joining of the casks seals.

The HI-STORM 100 canister system as designed to be used as part of the
larger HI-TRAC system. The HI-TRAC system is used to transfer canisters to
the intermediate storage site or to a future permanent storage location. This work
investigates a HI-STORM 100 canister system sitting on an independent spent fuel
storage installation, therefor, the HI-TRAC transportation shielding will not be
investigated in this work.

Spent fuel generates a mixed spectrum of neutrons and gammas which the
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Figure 1: Section view of Holtec HI-STORM overpack with
MPC.
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(a) (b)

(c)

Figure 2: Three MPC configurations used with the Holtec
HI-STORM 100. a) MPC-24, b) MPC-32, c) MPC-68. The
MPC-32 was chosen for this work.
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Figure 3: Holtec HI-Storm 100 overpack. The central annulus
is standard concrete to provide neutron shielding and protec-
tion if the cask were dropped or tipped over. The concrete
is surrounded by carbon steel to provide gamma shielding,
strength, and protection.
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HI-STORM 100 spent fuel casks attenuates to provide radiation shielding to power
plant workers and surrounding public. For this work, the transport of neutrons
through the spent fuel cask will be investigated. The Boltzmann transport equation
(BTE) for neutrons mathematically describes the transport of neutrons through
matter, and forms the basis for the analytic models used in this work.

2.2 Neutron Transport

The BTE, also called the neutron transport equation, describes the population
density of neutrons in a given environment and was developed as a balance equa-
tion accounting for the neutrons in a particular region of phase spaced given by
dV, dE, dΩ̂, and dt. dV is an incremental volume, dE is an incremental energy, dΩ̂
is the incremental direction vector, and dt is an incremental time. Time dependence
will be neglected for this work as the neutron spectrum evolves slowly in time
compared to the time between neutron interactions. We use a heuristic approach
to develop the BTE accounting for source and loss terms [5]. We will begin by
mathematically creating expressions for each of the following terms:

I Gain Mechanisms

(a) All neutron sources in volume dV
(b) Neutrons streaming into volume dV , through an incremental surface dS
(c) Neutrons in a different phase space entering the phase space of interest

II Loss Mechanisms

(d) Neutrons leaking out through surface dS
(e) Neutrons undergoing a reaction in dV

Duderstadt and Hamilton provide a framework for transforming the heuristic
expression into an equation [6]. Starting with the most straight-forward terms and
progressively getting more difficult, we take the source term, term (a),

(a) =
[ ∫

V
s(r, E, Ω̂)d3r

]
dEdΩ̂ = S(r, E, Ω̂). (1)

Eqn. 1 describes the neutrons generated in dV , where r is the position vector
that describes the center point of dV . The source term accounts for all neutrons
with energy in range E to E + dE produced from an external source such as fission
or radioactive decay.

A neutron can be removed from our phase space as a result of an interaction.
Eqn. 2 accounts for neutrons lost through interactions. Σt is the total macroscopic
cross section. Cross sections determine the probability of a certain type of reaction
occurring. The total cross section determines the probability of any reaction
occurring. ϕ is the neutron angular flux, the variable for which we will be solving.
The flux describes the neutron population as a function of r, E, Ω̂ and is used in
many areas of nuclear engineering, such as in calculating dose to a person, detecting
illicit material, and determine burn-up of nuclear fuel.

(e) =
[ ∫

V
Σt(r, E)ϕ(r, E, Ω̂)d3r

]
dEdΩ̂ (2)

The in-scattering term, term (c), accounts for neutrons scattering from other
energies or directions into dEdΩ̂. Mathematically, this process is expressed as
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(c) =
∫
V
d3r

∫
4π
dΩ̂
∫ ∞

0
dE′Σs(E′ → E, Ω̂′ → Ω̂)ϕ(r, E′, Ω̂). (3)

Σs is the macroscopic scattering cross section. This value determines the proba-
bility a neutron will undergo a scattering event, which will change the neutron’s
direction and can change the neutron’s kinetic energy. The integration over the
primed quantities indicates a neutron can enter the appropriate point in phase space
from any other direction or energy.

Terms (b) and (d) together describe the neutron streaming in dV . Taking

(d)− (b) =
∫
V
d3rΩ̂ · ϕ(r, E, Ω̂) (4)

to be the mathematical expression derived by using divergence theorem to
convert the boundary integral into a volume integral to determine the net number
of neutrons entering dV .

To handle the integral over dV , we apply the fact that the volume was chosen
arbitrarily. Hence, the only way for the integral to vanish for any volume is for the
integrand to equal zero [6]. We arrive at the BTE

Ω̂·∇ϕ+Σt(r, E)ϕ(r, E, Ω̂) =
∫

4π
dΩ̂′

∫ ∞
0

dE′Σs(E′ → E, Ω̂′ → Ω̂)ϕ(r, E′, Ω̂)+S(r, E, Ω̂).

(5)
The BTE is a linear, first-order, integro-differential equation, one of the most

difficult forms of problems to solve. The solution to the full BTE can only be
found in the simplest of cases. Current work uses a reduced form of the BTE to
solve for the flux across a slab of BoralTM near the center of the cask. Discussion
of the assumptions used to arrive at a tractable form of the BTE are found in
Sec. 3.4. Understanding which assumptions on the analytic model hold reveals
underlying physics of the problem. If the simplified analytic solution matches the
simulated result, the assumptions applied to the analytic solution were valid and we
understand the physics in that sub-region. However, if the analytic solution does
not match the simulated result, we now understand that there is some physics not
being accounted for in the analytic model. In either situation, we have learned more
about the physics of the problem.

Future work will relax the assumptions currently used to arrive at a manageable
analytic model, resulting in models that more accurately describe the underlying
physics of a problem. Solving future models is expected to require the use of more
robust differential equation solving methods. Symmetry analysis is a technique
that reduces the complexity of a differential equation, resulting in a more tractable
expression.

2.3 Symmetry Analysis

Current work is focused on applying analytic models to sub-regions in phase space.
These analytic models prove challenging to solve directly and therefore require some
type of simplifications to solve. In order to reduce the complexity of the models used
in this work, assumptions were applied. Applying assumptions, however, results in
a loss of accuracy. Therefore, it would be beneficial to relax assumptions used in
initial work to arrive at more rigorous analytic models. Methods do exists for solving
these equations, but many methods rely on manipulating a differential equation
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into a form for which a solution is already known. This can become cumbersome or
impossible as the difficulty of an equation increases, these methods may not be able
to be applied. Symmetry analysis provides a more standardized approach to solving
linear and non-linear differential equations. As symmetry techniques will become
important in future work, it is convenient to introduce a framework at this point.

Symmetry analysis is essentially the systematic means for constructing a change
of variables that maps a differential equation into a space where the equation depends
on fewer variables. The solutions to the simplified problem will also be solutions
to the original differential equation if the differential equation is invariant under a
chosen transformation process.

Mathematical invariance occurs when a transform is applied to an equation
which leaves the equation unchanged in a new coordinate system [7]. To further
explain invariance, the following example is provided. F (x, y, ∂y∂x) is the function
described by x, y and ∂y

∂x , eqn. 6.

F

(
x, y,

∂y

∂x

)
=
∂y

∂x
− ex−y = 0 (6)

Introducing the translation operation on x, y, and ∂y
∂x as

x = x̃+ s

y = ỹ + s

∂y

∂x
=
∂ỹ

∂x̃
.

(7)

Substituting the expressions for x, y, and ∂y
∂x into eqn. 6 leaves the original

function invariant as shown by eqn. 8.

F

(
x, y,

∂y

∂x

)
=
∂y

∂x
− ex−y

=
∂ỹ

∂x̃
− ex̃+s−(ỹ+s) = F

(
x̃, ỹ,

∂ỹ

∂x̃

) (8)

Function F̃ is the transformed function. The important piece to note is the
elimination of the constant, s, as a result of the transformation. The expressions
we are interested in will be invariant under certain transformations which will lead
to a reduction of one or more independent variables resulting in a more tractable
problem.

A transformation that maps a function onto itself, ie. leaves the function
invariant, is called a symmetry. Since all points of the original function are mapped
back onto itself, the solutions of F̃ are then solutions of F . If F̃ is simplified by the
transformation, then determining the solutions to F̃ will be a simpler endeavor than
solving F directly. Symmetry analysis is a useful tool to solve difficult ordinary
and partial differential equations, however, finding the symmetries exhibited by an
equation is not a trivial task. Luckily, some symmetries can be found systematically
where the resultant set of symmetries are helpful in solving systems of autonomous
ordinary differential equations [8]. We will now determine the symmetries of a
first-order differential equation using methods presented by Olver to examine the
utility of symmetry analysis in solving a complex differential equation [9].

Taking an additional example

G

(
x, y,

dy

dx

)
=
dy

dx
− y

x
− tan

(
y

x

)
= 0. (9)
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Eqn. 9 has no immediately apparent solution. Determining symmetries through
inspection proves challenging as well. Therefore, we must systematically identify
the symmetries for this problem.

To provide a general basis for symmetry analysis techniques, we take an arbitrary
function, F (x, y, dydx) and relabel ∂y

∂x as z, for notation simplicity, before returning to
our example given in 9.

We begin by defining a set of transformations under which F (x, y, z) is invariant.

x̃ := α(x, y, z; ε), ỹ := β(x, y, z; ε), z̃ := γ(x, y, z; ε) (10)

In our transformations, ε represents the group parameter used to transform x, y
and z to x̃, ỹ and z̃ and α, β, and γ are arbitrary functions that transform x, y and
z.

Using the set of transformations in 10, lead to:

F (x̃, ỹ, z̃) = F (x, y, z) (11)

For clarity, we will redefine F (x, y, z) as F and F (x̃, ỹ, z̃) as F̃ . We want to
deduce the linearized action of the transformation about the identity element on
F . We do this because evaluating eqn. 11 for arbitrary α, β, γ is difficult if not
impossible. Lie’s great achievement was demonstrating that this localized evaluation
of 11 is entirely adequate to determine invariance. The identity transformation, I, is
defined as an operator that acts on a function to yield the same function,

I{F} = F̃ = F. (12)

Taking the Taylor series expansion about ε = 0

F̃ = F + ε
∂F̃

∂ε

∣∣∣
ε=0

+
ε2

2
∂2F̃

∂ε2

∣∣∣
ε=0

+O(ε3). (13)

Using chain rule to compute the derivative of the linear term yields

∂F̃

∂ε
=
∂F

∂α

∂α

∂ε
+
∂F

∂β

∂β

∂ε
+
∂F

∂γ

γ

∂ε
. (14)

Evaluating at ε = 0 and defining

η =
∂α

∂ε

∣∣∣
ε=0

, φ =
∂β

∂ε

∣∣∣
ε=0

, ζ =
∂γ

∂z

∣∣∣
ε=0

, (15)

leads to

∂F̃

∂ε

∣∣∣
ε=0

=
[
η
∂

∂x
+ φ

∂

∂y
+ ζ

∂

∂z

]
F. (16)

Determining the derivative of the second order term in eqn. 13 results in

∂2F̃

∂ε2
=

∂

∂x̃

(∂F
∂ε

)∂x̃
∂ε

+
∂

∂ỹ

(∂F
∂ε

)∂ỹ
∂ε

+
∂

∂z̃

(∂F
∂ε

)∂z̃
∂ε

=
[ ∂
∂x̃

∂x̃

∂ε
+

∂

∂ỹ

∂ỹ

∂ε
+

∂

∂z̃

∂z̃

∂ε

]∂F
∂ε
.

(17)

Evaluating eqn. 17 at ε = 0 yields

∂2F̃

∂ε2

∣∣∣
ε=0

=
[
η
∂

∂x
+ φ

∂

∂y
+ ζ

∂

∂z

][
η
∂

∂x
+ φ

∂

∂y
+ ζ

∂

∂z

]
F. (18)
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The solutions to the first and second order terms share a common factor of
η ∂
∂x + φ ∂

∂y + γ ∂
∂z . From inspection, it can be seen that higher order terms of eqn.

13 will depend on η ∂
∂x + φ ∂

∂y + γ ∂
∂z as well. This term is called the prolonged group

generator which we defined as

prX := η
∂

∂x
+ φ

∂

∂y
+ ζ

∂

∂z
. (19)

Using the prolonged group generator to rewrite eqn. 13 results in

F̃ = F + εprXF +
ε2

2
prX2F +O(ε3). (20)

Subtracting F from both sides yields

F̃ − F = ε(prXF ) +
ε2

2
prX(prXF ) +O(ε3). (21)

To find symmetries exhibited by F and to find where F is invariant, we need
to solve eqn. 21 when set equal to 0. Luckily, (prXF ) is in every term of eqn. 21.
Therefore, wherever (prXF ) = 0 holds, all terms of eqn. 21 are simultaneously 0.

We return to our example problem, 9, and apply the prolonged group generator,
eqn. 19 which allows us to solve for η, φ and ζ. Taking the derivatives results in the
determining equation, eqn. 22.

η
[ y
x2

+
y

x2
sec2

(
y

x

)]
+ φ

[1
x

+
1
x
sec2

(
y

x

)]
+ ζ = 0 (22)

Through inspection, a solution to the determining equation is

η = x, φ = y, ζ = 0. (23)

We need to ensure the definition of the derivative is preserved (invariant) across
the coordinate transform. We can check that the derivative is invariant under the
transform by setting z equal to zero, and using the definition of z, as

z − dy

dx
= z(dx)− dy = 0. (24)

Applying the prolonged group generator to check for invariance yields

prX(z(dx)− dy) = 0. (25)

Evaluating eqn. 25 using chain rule gives

zprX(dx) + dxprX(z)− prX(dy) = 0. (26)

Remembering eqn. 19 and using the identity prX(dx) = d
(
prX(x)

)
to evaluate

eqn. 26 leads to

ζ +

[
∂η

∂x
+
∂η

∂y
z

]
z −

[
∂φ

∂x
+
∂φ

∂y
z

]
= 0. (27)

Using 23 to verify eqn. 27 is equal to 0,

0 + [1 + 0z]z − [0 + z] = 0. (28)

After verifying the accuracy of the prolonged group generator, values for η, φ,
and ζ are substituted into eqn. 19. Since the value of ζ is 0, the prolonged group
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generator is reduced to the group generator, X. The difference being the group
generator does not contain information about derivatives where the prolonged
group generator contained information about z. The final expression for the group
generator is

X = x
∂

∂x
+ y

∂

∂y
(29)

We now apply X to a function F (x, y) which we want to exhibit the same
symmetries as our differential equation. To accomplish this, we set X{F} = 0.

X{F} = x
∂F

∂x
+ y

∂F

∂y
= 0 (30)

We have now produced the characteristic system,

dF

0
=
dx

x
=
dy

y
. (31)

Solving the characteristic system yields a set of constants, called similarity
variables, which will be a combination of dependent and independent variables that
do not change under the action of the group. These constants can then be used to
simplify our differential equation.

dF

0
=
dx

x
(32)

and

dx

x
=
dy

y
(33)

produces

F = constant (34)

and

r =
y

x
, (35)

from eqns. 32 and 33 respectively. r is the similarity variable arising from the
solution to the characteristic system.

We still need to determine dy
dx in the new coordinate system. This is done by

applying chain rule to eqn. 35, where the result is given by

dy

dx
=

d

dx
(rx) =

dr

dx
x+ r. (36)

We can now rewrite eqn. 9 into our new coordinate system using r,

dr

dx
x+ r − r − tan(r) =

dr

dx
x− tan(r) = 0. (37)

Eqn. 37 is a separable equation with the solution

r = sin−1(cx) (38)

where c is an integration constant. Finally, mapping eqn. 38 back into our
original coordinate system produces the solution to eqn. 9,

y = xsin−1(cx). (39)
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To summarize the symmetry analysis method:

1. Re-write F (x, y, dydx) as F (x, y, z) = 0.

2. Apply the group generator to set up the determining equations.

3. Solve the determining equations to find the values for η, φ, and ζ.

4. Apply the completed prolonged group generator to find the characteristic
system.

5. Solve the characteristic system to find the similarity variables.

6. Re-express F in terms of the similarity variables to arrive at a simplified
expression.

7. Solve the simplified expression in terms of the similarity variables.

8. Re-express the solution in the original coordinate system.

The process of determining symmetries is time intensive and lends itself to
many mathematical errors. Luckily, there are mathematical software packages that
streamline the steps to acquiring the determining equations. These software tools
will likely be used in future work to aid in solving complicated analytic models.

2.4 Sensitivity Analysis

Once the validity of analytic models is established, sensitivity analysis will be
performed to rank the affect of uncertainty values inherent to the parameters present
in our models. The framework for sensitivity analysis is general allowing it to be
applied to the equations which approximate neutron transport.

A physical system is modeled by linear and/or non-linear equations which define
the systems response to a given input based on parameters. These parameters
are not classified as independent nor dependent variables, rather, proportionality
constants, physical constants, and derived quantities are among the the list of
possible categories of parameters.

In many cases, these parameters are regarded as constants with presumably
fixed values. In other cases, there is a level of uncertainty attached to a parameter,
with this uncertainty being described by a standard deviation with respect to some
mean of a set of measured values. This is the cases often found in models of physical
systems containing experimentally measured parameters, such as cross section data
in the context of neutron transport.

It becomes important to be able to predict the response of a particular mathe-
matical model to the behavior of input parameters. The practice of ascertaining
the behavior of a system in response to input parameter variations in known as
sensitivity analysis. The goal of sensitivity analysis is to analyze the behavior of the
response around a point or trajectory in the phase space defined by the parameters
and state variables of a problem [10].

The mathematical development of sensitivity analysis has been complied in
exacting detail in a purely mathematical setting by a number of authors including
Saltelli, et al.[11], Turányi & Rabitz [12], and Cacuci [13, 14]. Many of these methods
require extensive computational resources. However, Cacuci identified a direct
correspondence between the concepts of local sensitivity analysis (quantifying the
affects of small perturbations around a nominal parameter value) and a mathematical
entity known as the Gâteaux-derivative (G-derivative). From this association, he
circumvented many of the drawbacks inherent to traditional local sensitivity analysis.
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Cacuci’s development is also more general than alternatives, while allowing for
analysis of models that are not easily handled using other techniques. Therefore,
Cacuci’s methods will be used in this work to perform sensitivity analysis.

To determine the sensitivities of a system’s response, we introduce the G-
derivative. The G-derivative is a generalization of a directional derivative and exists
at discontinuities of a function as long as direction is continuous. Taking x0 and t
as real numbers, h is a fixed, nonzero element in real space, and R(x0) to be the
system response at x0, then the G-derivative of R(x0) is defined as:

δR(x0;h) := lim
t→0

R(x0 + th)−R(x0)
t

. (40)

Finding a system’s sensitivities involves calculating the first G-derivative, there-
fore δR(x0;h) is the sensitivity of the response to variation, h. Cacuci develops
two procedures for calculating a sensitivities: the Forward Sensitivity Analysis
Procedure (FSAP) and the Adjoint Sensitivity Analysis Procedure (ASAP). The
FSAP calculates the sensitivity of parameter variations individually. When the
number of parameter variations becomes large, it become advantageous to use the
ASAP procedure [15]. This method uses a solution of the FSAP along with the
adjoint problem to solve the sensitivities of all parameters simultaneously. Proposed
work will use the FSAP as the number of parameter variations being investigated is
expected to be low enough that using the ASAP would not be advantageous.

2.4.1 Forward Sensitivity Analysis Procedure

Physical systems can be modeled by a system of coupled operator equations that
can be mathematically expressed as

L(α)u = Q[α(x)]. (41)

L is a column vector containing the operators that act on u, the unique, nontrivial
solutions of a physical problem. α is a vector of parameters for the physical problem.
Q contains the inhomogeneous source terms.

Boundary conditions are used to solve the set coupled differential equations in
eqn. 41. We express the boundary conditions mathematically eqn. 41 as

B(αu−A(α). (42)

A and B are operators, where A represents all inhomogeneous boundary terms.
The FSAP involves taking the G-derivative of both eqn. 41 and 42. The result

of the respective G-derivatives is provided as eqn. 43 and 44.

L(α0)hu +
[
L′α(α0)u0

]
hα − δQ(α0;hα) = 0 (43)

{
B(α0)hu +

[
B′(α0)u0

]
hα − δA(α0;hα)

}
= 0 (44)

L′α(α0) and B′(α0) denote the first-order, partial G-derivative of L and B with
respect to α. Quantities with a zero superscript (0) are vectors containing values
of the unperturbed system, the nominal values of the system. hα is the vector
containing the parameter variations. hu is a vector of the variations in the state
functions contained in u.
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Luckily, the values of hα are known, since these parameter variations are chosen
by the user. Solving the system of equations in eqn. 43 with boundary conditions,
eqn. 44, will yield the variation in the state vector, hu.

The result of hu is used to determine the affects of the variation of input parame-
ters on the response of the system, the goal of our analysis. Knowing the importance
of each parameter can guide future model development to decrease the uncertainty
in the most important parameters and can also be used to reformulate models to
include only the most important parameters, which would reduce computational
resources needed to evaluate a problem [10, 16].

3 Current Work

Current work has been focused on developing a simplified HI-STORM 100 cask
system using Monte Carlo N-Particle (MCNP) radiation transport code [17, 18].
Neutron transport is the focus of this work, however, the methodologies developed
here can be extended to photon and charged particle transport. The MCNP
geometry was used in identifying a sub-region where assumptions could be applied
appropriately to develop a tractable analytic equation. These equations were then
solved and compared to results of the MCNP simulations as a proof of concept.

3.1 MCNP Geometry

To model the HI-STORM 100 in mcnp, some simplifications had to be made to
the MPC and overpack in order to reduce computation time required to converge
simulation results. One simplification was to homogenize the fuel bundles in each
cell of the fuel basket. Another was to eliminate some of the finer structure in the
canister system, such as lifting rings and bolts used to move or secure the MPC and
overpack. Figure 4 is the side view of the cross section of the HI-STORM overpack
filled with the MPC-32.

Figure 5a is the top down cross section view of the HI-STORM 100 overpack and
MPC-32. This view shows the homogenized fuel regions enclosed by the honeycomb
lattice of the MPC fuel basket. Figure 5b is a view of one fuel cell, showing the fuel
region surrounded by helium gas, all contained by the 304 stainless steel (304 SS)
basket. This image also shows the location of the BoralTM pads. These pads were
also homogenized by weight as they were during the licensing of the MPC container
[4].

Due to the complexity of the simplified cask, only 1
8 of the cask was simulated.

Figure 6 shows the final cask geometry used in MCNP simulations. The cask was
cut in half along the vertical axis and radially into quarters. Reflective boundaries
were used at each place the cask was cut to account for simplifying the geometry.
Tallies were also added in the simulation for comparison between simulation and
analytic results. An FMESH tally was applied across the BoralTM slab to measure
simulated flux through the pad.

3.2 Source Term

A realistic source spectrum was generated based on decay models from experimentally
determined spent fuel compositions. The Next Generation Safeguards Initiative
(NGSI) provides a detailed MCNP input desk for Westinghouse 17x17 PWR fuel with
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Figure 4: Cut away side view of the interior of the cask used
in MCNP simulations. The thin blue edge at the outside of
the cask is carbon steel. The yellow region is concrete with
openings for outside air (green) to enter the interior of the
cask for heat transfer purposes. The dark pink is the MPC
filed with rectangular light pink colored fuel regions.

(a) (b)

Figure 5: a) The top down section view of the MPC-32 used
in MCNP simulations. b) A single fuel cell region.
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(a) (b)

Figure 6: The complexity of a full cask requires significant
computational resources. Therefore, a 1

8
cask was simulated

in MCNP. a) Side view and b) top view of the 1
8

cask used in
simulations.

various initial enrichment and burn-up values [3]. Initial enrichment and burn-up of
3 wt% 235U, 30 GWd/MTU respectively were chosen for this work, similar to work
conducted by Yuan Gao [19]. Initial concentrations of each isotope were determined
by running an initial MCNP simulation in initialization only mode based on data
provided by NGSI. Once the initial concentrations were found, an ORIGEN-S input
deck was developed to calculate the spectrum as a result of spontaneous fission
and [α,n] reactions, the two predominate sources of neutrons from spent fuel [20].
ORIGEN-S is a 0-dimensional irradiation and decay modeling code included in the
SCALE packages developed by Oak Ridge National Lab [21]. The input deck used
to determine the neutron spectrum was based on work by Bowman [22]. The fuel
was cooled for 11 years before determining the neutron spectrum, similar to work
performed by Yuan Gao [19]. The spectrum is provided in figure 7.

3.3 Choice of Sub-region

A single fuel cell was chosen to be the sub-region of interest for initial proof of
concept calculations. In the analytic models of the fuel cell, He gas was treated
with a free-streaming approximation, the homogenized fuel acted as the source and
transport was conducted through the BoralTM slab. The following sections discuss
the reasoning for handling the fuel cell in the manner which it was treated.

3.4 Choice of Analytic Model

Qualitative analysis of the fuel cell alluded to the use of either diffusion equation or
a simplified BTE (resulting from applying assumptions). However, the accuracy of
initial qualitative conclusions needed to be tested to arrive at a final model.

An initial check was performed by comparing the total cross section of BoralTM

and He to the source flux from the spent fuel. Figure 8 shows that the contribution
of thermal neutrons on the total will be small, since the source flux decreases
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Figure 7: The source spectrum used in the MCNP simulation.
This spectrum was generated using ORIGEN-S to determine
the neutron spectrum from 3 % enriched Westinghouse 17x17
PWR spent fuel burned to 30 GWd/MTU.

approximately two orders of magnitude below 1 MeV. However, since the cross
section of BoralTM increases at thermal neutron energies, a two-group model was
decided upon to handle the separate physics that occurs at different neutron energies.

After deciding to handle the energy dependence as two separate energy groups,
a transport model had to be chosen. Figure 9 aided in the selection of a simplified
BTE model. Figure 9 shows the mean free path (mfp) of the materials of interest
between the fuel region and BoralTM pad. The mfp, λ, is the average distance
between interactions and is defined by eqn. 45, where λt is the average distance
between any interaction. Diffusion theory was not chosen as it is most accurate
when the thickness of a material is much greater than the mfp, where the thickness
of BoralTM is on the same order as the mfp across the entire energy range. A
free-streaming approximation was applied to the He region as the neutron mfp in
He is much greater than the thickness of He in the fuel cell.

λt = Σ−1
t (45)

The final step was to determine where the energy threshold should be set between
the fast and thermal energy groups. This threshold determines which model was
used for each energy group, ie. the thermal model was used for neutron energies
below the threshold and the fast model was used for neutrons above the threshold.
Figure 10 was used to determine where this threshold should be placed. This image
shows the ratio Σa

Σt
, where Σa is the absorption cross section. This graph shows the

energy regions where absorption, the primary interaction in thermal energy regions,
dominates the probability of reaction type. From figure 10, the energy threshold
between the two models was set to 1 eV since below this region, absorption reactions
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Figure 8: The cross section of materials present in the fuel cell
region were plotted against the source spectrum to determine
if a single group or multi-group model was needed to handle
neutron transport.

are more probable even though the source flux is lower.
The final choice of an analytic model was a simplified version of the BTE. Here,

we apply an isotropic scattering assumption which relaxes the directional dependence
of Σs and assume isotropic flux which reduces the angular flux, ϕ, to the the scalar
flux, φ. Eqns. 46 and 47, where the subscripts 1 and 2 refer to parameters in the
fast group and thermal group respectively.

Ω̂ · ∇φ1 + Σt,1φ1 = Σs,11φ1 + S1 (46)

Ω̂ · ∇φ2 + Σt,2φ2 = Σs,12φ1 + Σs,22φ2 + S2 (47)

The integrals over energy, present in eqn. 5, in eqns. 46 and 47 are accounted
for by averaging the cross section and flux terms across each energy region. The
subscripts 1 and 2 (ie. Σt,1) denote the energy averaged cross section in the fast
group, group 1, or the thermal group, group 2, respectively. Sec. 3.5 describes the
calculations used to find these values.

The terms Σs,11 and Σs,22 are the in-group scattering terms for group 1 and
group 2 respectively. The in-group scattering term accounts for scattering events
that changes a neutron’s energy, but does not remove the neutron from the group.
Eqn. 47 depends on both Σs,12 and φ1, as neutrons from group 1 will enter group 2
as a result of scattering interactions which decrease a neutron’s energy below the
lower threshold of group 1. Group 1 has no dependency on scattering interactions
occurring in group 2, as we have assumed that a neutron in the thermal energy
group will not gain enough energy from a scattering event to become a fast neutron
again, a process called up-scattering. This is a fair assumption because there are no
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Figure 9: The mfp of materials in the fuel cell were plotted
against the source spectrum. The source spectrum is present to
qualitatively compare which energy regions are most important.
Due to the large mfp of He, it was decided that the effect
of neutron scatter events in He would contribute little to
the transport problem from the fuel surface to the exiting
boundary of BoralTM . Therefore, neutrons in the He region
were treated as free-streaming.
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Figure 10: The ratio of Σa
Σt

was plotted to determine the
energy cutoff between the fast and thermal neutron groups.
The threshold was determined to be 1 eV since the absorption
cross section begins to dominate below 1 eV.

atoms in the problem that are capable of imparting enough energy to a scattered
neutron to increase the neutron’s energy above 1 eV .

These equations are still difficult to solve after only considering a steady state
assumption to eliminate time dependence. Therefore, more assumptions are applied
to arrive at the final form of the two equations used in analytic calculations.

We first treat the sub-region as a 1-D planar geometry. This is a good assumption
as the geometry of the fuel cell is symmetric in the x and y directions, allowing
us to focus on the transport in either the x or y direction, the x-direction was
chosen. The length of the problem in the z direction allows us to investigate the
neutron transport along the x-axis independent of boundary effects from the the
top and bottom of the fuel region, allowing us to remove z-dependence from our
models. Variables that are defined by vectors (ie. Ω̂) become 1-D scalars and the
gradient operator reduced to its 1-D form, ∂

∂x . Eqns. 48 and 49 are the result of the
assumptions we have already applied. We have set our source s in both equations
to zero, S = 0, since there are no neutrons being produced in BoralTM .

Ω̂x
∂φ1

∂x
+ Σt,1φ1 = Σs,11φ1 (48)

Ω̂x
∂φ2

∂x
+ Σt,2φ2 = Σs,12φ1 + Σs,22φ2 (49)

The two equations are similar in form since our we have not made any assumptions
about the physics that occurs in each individual region. We can make further
assumptions by treating each energy group separately. We assume the fast region is
scattering dominated resulting in the total cross section approximately being equal
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to the scattering cross section, Σt ≈ Σs. Rearranging the terms such that the fast
group equation equals zero, leads to

Ω̂x
∂ϕ1

∂x
+ (Σs,1 − Σs,11)ϕ1 = 0. (50)

Defining Σs,1 as

Σs,1 := Σs,11 + Σs,12, (51)

where Σs,12 is called the removal cross section of group 1 to group 2, ΣR,12.
Using definition 51 leads to the final form of the fast group BTE, eqn. 52, that will
be used for analytic calculations in BoralTM . The only mechanisms present in eqn.
52 are streaming and removal, principally due to scattering.

Ω̂x
∂ϕ1

∂x
+ ΣR,12ϕ1 = 0. (52)

Returning to eqn. 49, assume Σa,2 >> Σs,22 and Σs,22 = 0. We are assuming
that scattering interactions only account for a small percentage of all interactions
occurring in the thermal group. This assumption simplifies the group 2 total cross
section to be approximately equal to the group 2 absorption cross section, Σt ≈ Σa

The result of these two assumptions lead to the final form of the thermal group
BTE used in analytic calculations, eqn. 53.

Ω̂x
∂ϕ2

∂x
+ Σa,2ϕ2 = ΣR,12ϕ1 (53)

Note the dependence of eqn. 53 on ϕ1. This is due to neutrons from the fuel
primarily being born at fast energies, shown by the spent fuel spectrum, and no
source of thermal neutrons being present in BoralTM . Therefore, the only source of
neutrons in the thermal group are those which down-scatter from the fast group.

3.5 Analytic Solution

After determining the simplified analytic models used for calculations, it is important
to discuss how the cross section will be handled. Cross sections are energy dependent
parameters that vary across the energy range of each group. Duderstadt and
Hamilton describe a way to calculate average cross section values across an energy
range [6]. Average cross section data is calculated by taking a flux weighted average
across the energy range of interest, eqn. 54.

〈Σx〉 =

∫ Eg
Eg−1

ϕgΣx(E)∫ Eg
Eg−1

ϕg
(54)

g is the number of the group where 〈Σx〉 will be calculated across the energy
range Eg−1 to Eg, Σx corresponds to the cross section for reaction x, and ϕg is the
flux in group g. Finding a solution to eqn. 54 is somewhat circular as the average
cross section is needed to calculate the group flux and the group flux is needed to
calculate the average cross section. Therefore, the source flux was used to determine
the group flux in the fast and thermal groups. Once the flux through BoralTM was
found. This flux was used in eqn. 54 to check the initial averaged cross section
values used in analytic models.

MCNP has a built in cross section plotter which calculates cross sections for
materials based on atom percent of constituent isotopes which comprise that material.
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The cross section plotter has an option to print an output table of of the cross
section as a function of energy. Continuous energy cross section data was used in
both MCNP calculations and to develop the tables used for calculating average
cross section values used in the analytic models.

The removal cross section, ΣR,12, was calculated using the following approxima-
tion provided by Lewis [5].

ΣR,12 ≈
1
n

Σs, (55)

where n is the average number of collisions for a neutron to slow down from its
original energy, E0, into the thermal region, E. E0 was taken to be approximately 1
MeV and E was 1 eV, the cutoff between the fast and thermal groups. In BoralTM ,
n is approximately 125 collisions. In proposed work, a more rigorous method for
calculating the removal cross section will be used based on solving a series of partial
differential equations as outlined by Duderstadt and Hamilton [6].

The general solutions were found using mathematica to solve the ordinary
differential equations for the fast and thermal regions. Eqns. 56 and 57 are the
general solutions from eqns. 52 and 53 for the fast group and thermal group
respectively.

φ1(x) = Ae
−

ΣR,12x

µ (56)

φ2(x) =
AΣR,12e

−
Σa,2x

µ
+

(Σa,2−ΣR,12)x

µ

Σa,2 − ΣR,12
+Be−

Σa,2x

µ
(57)

Eqns. 56 and 57 can be solved by applying the initial conditions, eqns. 58
and 59, respectively.In the initial conditions, φf are the values of the source flux
corresponding to neutron energies above 1 eV, and φt are the values of the source
flux corresponding to energies below 1 eV.

φ1(x = 0) = φf (58)

φ2(x = 0) = φt (59)

Using the initial conditions to determine values for A and B produces the final
equations for the fast and thermal flux, eqns. 60 and 61 respectively.

φ1(x) = φfe
−

ΣR,12x

µ (60)

φ2(x) =
φfΣR,12e

−
Σa,2x

µ
+

(Σa,2−ΣR,12)x

µ

Σa,2 − ΣR,12
+
φt(Σa,2 − ΣR,12)− φfΣR,12

Σa,2 − ΣR, 12
(e−

Σa,2x

µ
)

(61)
A final adjustment was made to account for the presence of a source on the

opposite side of the BoralTM slab since a fuel cask contains a lattice of fuel bundles
with BoralTM pads being placed between two sources. A second source flux was
geometrically attenuated from the location of the second source through the BoralTM

slab and added to the fast and thermal fluxes accordingly. The steel between the
second source and BoralTM Slab was assumed to negligibly alter the source flux.
The final results of the fast and thermal fluxes are shown in figures 11 and 12.
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Figure 11: Analytic solution to eqn. 56

Figure 12: Analytic solution to eqn. 57
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The analytic solution of the fast flux decays as a function of BoralTM depth as
a result of streaming and neutron scattering interactions removing neutrons from
the fast group. This trend is expected as BoralTM has no internal source to provide
neutrons and the only mechanisms present in eqn. 52 are streaming and removal.
However, there is an inflection point in the fast flux due to the second source as seen
in fig. 11. The thermal flux has an initial value of ≈ 2neutrons

cm2s
. The thermal flux

increases rapidly as fast neutrons down-scatter into the thermal group, shown in
figfig:anaThermFlux. Absorption and streaming mechanisms cause the thermal flux
to decrease as a function of penetration depth. The flux as a function of penetration
into the BoralTM pad will be compared to MCNP simulation results.

3.6 MCNP Simulation Results

The flux through the BoralTM slab in a fuel cell was tallied using an FMESH
tally across the entire BoralTM slab. The mesh was designed to accommodate 50
cells across the thickness of the BoralTM slab to acquire fine detail in the flux as
a function of thickness. Figure 13 is the normalized flux as a function of depth
through the BoralTM slab.

The flux through the slab trends downward, as expected, before an inflection
point, around 0.18 cm, shows the trend climbing. The upward trend at depths
above 0.18 cm is a result of a second fuel bundle located on the opposite side of the
BoralTM .

Figure 13: Results of the FMESH tally through the BoralTM

pad.

4 Comparison of Results

A comparison of the total flux determined through analytic methods and from
MCNP simulations is provided in figure 14. The two fluxes agree well showing that
the assumptions and approximations used to arrive at the analytic solution were
credible.

From this process, we know the flux can be represented well using a two group
model of the BTE, the interior layer of He can be neglected, the thermal flux
is absorption dominated, the fast flux is scattering dominated, and the neutron
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Figure 14: A comparison between the flux determined using
analytic methods and MCNP simulations.

scattering can be treated as isotropic. While these are important conclusions, using
the analytic solution to verify MCNP results can be more important to ensure the
input file was correctly developed.

5 Future Work

In order to show this methodology leads to accurate and reliable analysis, it is
important to identify other sub-regions in phase space where simplified theory can
be applied. Five to six other sub-regions will be identified to show the versatility
of this methodology. These sub-regions will likely not allow the same assumptions
used in the fuel cell example.

While applying assumptions to the analytic models makes them tractable, solving
more complex models reveals deeper physics governing the problem. Symmetry
analysis will allow some assumptions to be relaxed while retaining a tractable model,
yielding a more rigorous set of analytic models that those used in the fuel cell
example.

Along with developing more complete analytic models, a more detailed HI-
STORM 100 overpack and MPC model will be developed in MCNP. Gao showed
that neutron transport in spent fuel casks is affected by geometry [19]. Therefore, a
detailed MCNP model will be constructed where the geometry of the homogenized
fuel region will be reduced to individual components and the air vents in the overpack
will be changed to model the real-world air vents of the HI-STORM 100. Future
sub-regions will be identified using the detailed MCNP geometry.

After comparing the results of the rigorous analytic models with the detailed
MCNP simulations, a sensitivity analysis of the computational model will aid in
identifying parameters that affect the calculated response from analytic models. The
analytic models will then undergo a sensitivity analysis using the FSAP described
by Cacuci. Finally, the results from the sensitivity analysis between computational
and analytic models will be compared.
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5.1 Timeline and Expected Papers

The timeline, table 5.1, describes the proposed time to completion of remaining
tasks.

Task Fall ’18 Spr ’19 Sum ’19 Fall ’19 Spr ’20 Sum ’20 Fall ’20
Identification of
sub-regions

X

Development of
detailed MCNP
geometry

X

Apply theory
to sub-regions

X X

Comparison of
results

X

Id of input
parameters for
Sensitivity Analysis

X X

Find sensitivities
of BTE using
FSAP

X X

Write dissertation X X

We expect this work to be yield at least three papers. The first discussing the
results of symmetry analysis on simplified forms of the BTE, a second paper on
verifying nuclear simulations through comparison to analytic models, and the final
paper describing the results of FSAP analysis of nuclear transport equations. This
work is also suited for presentations in conferences such as those hosted by the
American Nuclear Society and the Society of Physics Students-Division of Nuclear
Physics.

6 Conclusion

The results of the fuel cell example provide evidence that analytic theory can be
compared to MCNP simulations in order to gain a deeper understanding of the
underlying physics in a problem and to verify the MCNP simulations were developed
correctly. These results lend credence to the idea that confidence can be built in
simulation result when experimental data is limited or non-existent by comparing
computational solutions with analytic solutions. By identifying multiple, appropriate
sub-regions in a problem, one is capable of developing a full understanding of the
problem.

The purpose of this work is to gain a deeper understanding of the problem
to better analyze the results of a simulation. The process of finding the analytic
solution in the previous work reinforces the credibility of the assumptions used to
develop our analytic models.

Simulation work has extended the complexity of problems which we can solve,
making it an imperative tool for research. However, we can increase our knowledge
of the underlying physics in a problem through analytic analysis which also be
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used to verify simulation model accuracy. By identifying which sources of uncer-
tainty have the most impact on a models response, we gain further knowledge of
how a computational or analytic model can be improved to decrease the system’s
uncertainty.
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